
Are Query-Based Ontology Debuggers Really Helping

Knowledge Engineers?

Patrick Rodler∗, Dietmar Jannach, Konstantin Schekotihin, Philipp Fleiss

Department of Applied Informatics
AAU Klagenfurt, 9020 Klagenfurt, Austria

[�rstname.lastname]@aau.at

Abstract

With the spread of Semantic Web technology, applications that are built upon

explicitly encoded domain knowledge have regained popularity in recent years.

Since the underlying knowledge bases can easily become large and complex, it

is not uncommon that such knowledge bases contain faults. Correspondingly,

a number of knowledge base debugging approaches, in particular for ontology-

based systems, were proposed throughout recent years. Query-based debugging

is an interactive approach that involves knowledge engineers answering a series

of questions and then uses the provided answers to localize the true cause of an

observed problem. Concrete implementations of this approach exist, such as the

OntoDebug plug-in for the ontology editor Protégé. We conducted di�erent user

studies to assess the practical value and the limitations of such an interactive

approach since typical simulation-based evaluations are not fully informative in

this regard. One main insight from the studies is that query-based debugging is

indeed more e�cient than an alternative algorithmic debugging approach based

on test cases. We also observed that users frequently made errors in the process,

which highlights the importance of a careful design of the queries that are asked

to the users.
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1. Introduction

Systems that are built upon Arti�cial Intelligence (AI) techniques are often

classi�ed into two categories: (i) systems that are designed to automatically

learn from data, and (ii) systems based on explicitly encoded domain knowledge

and automated inference services. Knowledge-based software systems are typical5

representatives of the latter form of AI with a number of successful applicati-

ons in various domains such as planning and scheduling, medical advice-giving

systems, product con�guration, or recommender systems [1, 2, 3, 4, 5].

The correctness of the decisions and suggestions made by a knowledge-based

system depends directly on the ability of an expert to formulate and maintain10

a knowledge base (KB) that describes the application domain. Both know-

ledge formalization and maintenance can be challenging due to (i) the cogni-

tive complexity of the task and (ii) the size and complexity of the resulting

knowledge base�e.g., biomedical ontologies as found on BioPortal1 sometimes

contain thousands of axioms. The results reported, e.g., in [6, 7, 8, 9] sug-15

gest that people make systematic faults when writing or interpreting logical

sentences. Furthermore, in some cases, knowledge bases are constructed in a

collaborative manner by multiple contributors, which is another potential source

of faults [10, 11, 12].

Overall, given that unintended or contradictory speci�cations are likely to20

occur in such knowledge bases, it is essential to provide experts with appro-

priate tools for fault detection, localization, and repair. Over the last decades

researchers suggested di�erent techniques and implemented a number of assis-

ting tools for these tasks. Many of these techniques are based on the principles

of model-based diagnosis (MBD) [13], which is a versatile fault localization25

method with a range of applications, e.g., in the context of electronic circuits,

declarative programs, knowledge bases and ontologies, work�ow speci�cations,

1http://bioportal.bioontology.org
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as well as programs written in domain-speci�c and general-purpose languages

[14, 15, 16, 17, 18, 19, 20, 21].

In the context of knowledge base debugging, MBD techniques are applied30

when a knowledge base does not ful�ll some basic requirements, e.g., when it is

inconsistent in itself, or when test cases indicate a failure, i.e., an unexpected

output. In the usual MBD problem formulation, test cases are logical senten-

ces that must (or must not) be entailed under the assumption of a correctly

formulated knowledge base. The output of an MBD tool is a collection of di-35

agnoses, where each diagnosis corresponds to a set of assumedly faulty parts

of the knowledge base. Users of the debugger, such as experts or knowledge

engineers, can then investigate one diagnosis after the other and inspect the

involved components to see if they are faulty or not.

Unfortunately, the number of diagnoses can in some cases be large, e.g.,40

because the information provided by the test cases is insu�cient and does not

allow the debugger to isolate the true cause of the observed failure. In such cases,

already early works suggested asking an expert to provide additional information

to narrow down the set of possible fault locations [21]. For example, in the

traditional application domain of MBD techniques�electronic circuits�users of45

a diagnosis system were asked to make additional measurements that give some

indication of the health state of certain components. In more recent years,

di�erent algorithms for sequential (or: interactive) diagnosis for knowledge-

based systems were proposed [12, 22, 23, 24, 25, 26, 27]. Debuggers of this type

interactively ask their users to provide feedback about the correctness of parts of50

the knowledge base or certain inferences. One concrete implementation of such

a debugger is OntoDebug [28, 29], a plug-in for the Protégé ontology editor.

Compared to approaches that solely rely on test cases, the main advantage

of such query-based techniques is that they can interactively guide their users

to the true cause of the observed problem. In addition, if the users always55

provide correct answers to the debugger's questions, then query-based diagnosis

techniques can guarantee the identi�cation of the true fault location.

The evaluation of sequential diagnosis techniques is usually based on simula-
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tions designed to measure, for instance, the time needed to derive the best next

query to the expert or the total number of required queries to isolate a fault.60

Such measures however can have certain limitations when it comes to assess the

true usefulness of a debugging approach. In the domain of software engineer-

ing the practical relevance of results obtained with the help of simulation-based

evaluations of debugging tools was previously questioned by Parnin and Orso in

[30]. In recent years, a number of user studies were therefore conducted by rese-65

archers that aim to assess the true usefulness of di�erent academic approaches

to tool-supported testing and debugging in the context of software engineering

[31, 32, 33].

With the present paper we continue this line of recent research. Speci�cally,

our goal is to determine the usefulness of query-based approaches for knowledge70

base debugging. We correspondingly conducted laboratory studies in the form of

testing and debugging exercises, where participants either applied an approach

based on test cases or were supported by a query-based debugger, concretely, by

an earlier version of the OntoDebug tool mentioned above. Our research ques-

tions are related to (i) the e�ciency and e�ectiveness of query-based debugging75

(i.e., do experts need less time, do they �nd more faults?), (ii) the ability of

users to �nd out which of the returned diagnoses is the correct one, and (iii) the

complexity of answering system-generated queries for experts.

Among other aspects, our results show that a query-based approach is in-

deed helpful to make the debugging process more e�cient, without leading to a80

loss in e�ectiveness. Furthermore, as our experience and other studies show, ex-

perts sometimes provide wrong answers to the questions of a debugger (�oracle

errors�). We therefore conducted additional pen-and-paper studies to develop

and validate a prediction model that can be used to estimate the probability of

such oracle errors based on the complexity of the query or test case.85

The paper is organized as follows. After discussing previous works in Section

2, we provide the technical background on MBD-based knowledge base debug-

ging in Section 3. Section 4 presents the detailed research questions of our work

and Section 5 and Section 6 discuss the outcomes of our main studies. In Section
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7, we �nally present �rst results regarding our prediction model for oracle errors.90

The paper ends with a discussion of research limitations and a summary of our

contributions.

2. Related Work

The process of creating and maintaining a KB is prone to error and�like in

standard software development projects�experts can make mistakes when they95

encode the knowledge about a problem domain. Correspondingly, a number

of techniques and tools for KB testing and debugging were proposed over the

years. In the following, we �rst brie�y review the main debugging strategies

suggested in the literature and then speci�cally discuss previous works that

aimed at evaluating the utility of the corresponding tools with the help of user100

studies.

2.1. General Knowledge Base Debugging Approaches

We can mainly distinguish between model-based and heuristic approaches for

KB debugging. Among the model-based approaches, those based on the general

MBD principles proposed in [13] are probably the most popular ones. They105

were, for example, used to debug ontologies [16, 34, 35], constraints [14, 36], or

Answer Set Programming encodings [37, 38].

In case of ontology debugging, MBD methods are used to �nd sets of axioms,

called diagnoses (or: candidates/repairs), that must be modi�ed by a developer

in order to formulate the intended ontology. From the technical perspective110

these methods can roughly be classi�ed in glass-box and black-box ones [39, 40].

Glass-box approaches [41, 42, 43, 44, 45, 46, 47] modify the reasoner such that

a single run outputs justi�cations or diagnoses directly. Black-box methods, in

contrast, usually apply various search techniques [16, 22, 40, 48] with calls to

highly-optimized reasoners for consistency checking and/or the computation of115

justi�cations (con�icts) [35, 36, 49, 50].
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In practical settings, given an inconsistent/incoherent ontology an MBD

approach might return more than one diagnosis (sometimes referred to as can-

didates). In order to restrict the number of obtained diagnoses to only relevant

ones Friedrich et al. [16] suggested the notion of test cases, which were later also120

used in, e.g., [51, 52, 53]. Each test case is de�ned as set of axioms that must or

must not be entailed by the intended ontology. Given a set of test cases a de-

bugger can use them to focus only on those diagnoses such that if all axioms of a

diagnosis are changed the resulting ontology will satisfy all test cases. However,

in many situations, it can be unclear to a developer which test cases should be125

formulated before the diagnosis session such that a debugger will be able to �nd

the real cause of an unexpected output. In this case, query-based approaches

[21, 25, 27, 54] help the user to automatically create test cases. Speci�cally, the

task of the users is reduced to answering a sequence of queries on whether or

not the intended ontology must entail a given set of axioms. Given the answers130

of the developer a sequential debugger can determine the true diagnosis within

the candidates, i.e., the one diagnosis that pinpoints the actually faulty parts

of the knowledge base.

Depending on the complexity of the underlying problem, model-based met-

hods can be comparably costly in terms of computation time and space. Ho-135

wever, one main advantage of MBD approaches is that any diagnosis that is

returned is a precise and succinct explanation of all identi�ed problems.

In contrast, heuristic approaches to KB debugging, such as [55, 56], are

usually based on handcrafted syntactic pattern matching procedures, see, e.g.,

[8, 57]. Their main advantage is that they allow for the fast fault localization in140

case model-based approaches are too slow. Typically, the debugging procedures

are speci�cally designed to �nd (combinations of) syntax constructs in a KB

that are highly likely to be faulty. Examples of such constructs are, among

others, the application of universal role restrictions or disjointness constraints

in related ontology axioms [9]. However, the computational e�ciency of these145

methods comes at a price. On the one hand, they can only identify bugs for

which appropriate heuristics were de�ned. On the other hand, they might point
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to alleged bugs that turn out to be correct descriptions. Consequently, the

reliability of the returned results in terms of precision and recall can be low.

In this paper, we focus on the MBD approach presented in [20, 27], since it150

(i) provides guarantees about the completeness and soundness of the debugging

algorithms, and (ii) allows for a precise fault localization by querying its users

for additional information.

2.2. Usability Analysis of Tools

Since KBs in practice can be large and complex, the research community155

developed a number of Integrated Development Environments (IDEs) for KB

creation and maintenance. Examples of such environments are the MiniZinc IDE

for constraint modeling [58], Protégé, which supports the creation of ontologies

[59], ASPIDE as a tool for the development of Answer Set Programs [60], as

well as various Prolog IDEs like SWI-Prolog [61]. Several of these IDEs come160

with some embedded debugging support or can be extended with external tools

like the OntoDebug plug-in used in this paper [62, 63, 28].

Two main approaches exist in the literature to evaluate the usability of KB

debugging tools. One way is to do computational analyses providing us insig-

hts about the usability of the tools indirectly. The second form is based on165

user studies, where the performance and behavior of experts while using the

debugger is observed and analyzed. The majority of research works in the �eld

are based on the �rst form of experiments. In comparison to user studies, con-

ducting computational analyses is usually easier, since the only requirement for

such evaluations is the existence of a representative collection of faulty KBs170

that contain real-world or arti�cially injected faults. Given such KBs, the per-

formance of di�erent debugging algorithms can be compared, for example, in

terms of their time and space requirements, the number of calls to the reasoner,

the theoretical number of required user interactions, or the precision of the fault

localization process. The obtained results can then be used to indirectly assess175

potential usability enhancements of considered debugging approaches. For in-

stance, we can assume that the reduction of the required computation time
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improves the system's usability, e.g., because the developer gets faster feedback

and can �nd more bugs in shorter time.

However, computational analyses cannot be used to determine if the as-180

sumptions of the considered debugging methods actually hold. For instance,

the interactive ontology debugging method suggested in [27] assumes that a

user can decide with certainty if an arbitrary axiom must be entailed by the

intended ontology or not. If this assumption does not hold, i.e., the user can-

not (correctly) answer all queries of the debugger, the fault localization process185

might not lead to a unique (correct) result.

User studies can help us to verify such assumptions and can give us additional

insights regarding the acceptance and usefulness of a debugging tool. In the

literature, only a very few examples of such user studies exist.

For example, the model-based ontology debugging approach proposed in [34]190

and implemented in the Swoop editor [64] was evaluated by twelve undergra-

duate and graduate students [42]. The authors' goal was to investigate if pro-

viding justi�cations of bugs, i.e., irreducible faulty subsets of an ontology, can

help users �nd and repair bugs more e�ciently. Every subject that participated

in the study had at least nine months of experience in ontology engineering and195

went through an additional 30-minute training session on ontology debugging.

The results of the study indicate that tool support in the form of justi�cati-

ons during the debugging process is essential for successful fault localization.

However, given the small number of participants, the authors were not able to

validate that their results are statistically signi�cant.200

Another user study reported in [65] questioned if the justi�cations generated

by model-based ontology debuggers can actually be understood by the users.

Experiments were conducted with 14 undergraduate students and showed that

justi�cations can be separated into easy and hard ones. Unfortunately, also in

this case the small number of participants did not allow the authors to obtain205

su�cient statistical evidence to understand why the users �nd some explanations

hard or easy.

Finally, a collection of heuristic approaches [8, 9, 66] was studied in [67]
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and compared with an MBD approach [35]. All 14 subjects participating in the

study were educated software engineers, had some experience with ontologies,210

but no knowledge about hydrology, which was the domain of the study. The task

for the participants was to debug and repair an ontology without understanding

exactly what it is about. One group of six participants was supported by the

MBD approach; the remaining subjects used a heuristic strategy. The obtained

results were not fully conclusive. Both participant groups needed about the215

same amount of time and no clear preference for either of the approaches was

observed. Only for the problem of repairing the ontology, the heuristic patterns

helped the subjects to identify bugs more accurately. However, this result must

be interpreted with care because the model-based tool did not provide any repair

support at that time.220

In our work, we continue this line of research which aims to assess the usabi-

lity of debugging approaches based on user studies. Similarly to previous works,

we base the user study on di�erent KBs (ontologies) into which arti�cial faults

were injected. In addition, like in previous research, we involve students in the

study, who have a certain level of education in the development and debugging225

of ontologies and who received some initial training with the tool. In contrast

with previous studies, we were able to recruit a larger number of participants,

which allows us to apply certain statistical analyses. Moreover, we are focusing

not on justi�cations, which are alternative explanations of one fault, but on di-

agnoses, where each diagnosis provides a potential characterization of all faults230

in an ontology.

3. Background: Knowledge Base Debugging with MBD

In this section, we outline the main principles of applying model-based diag-

nosis techniques for knowledge base debugging. We use the particular problem

of ontology debugging to illustrate the problem. Ontology debugging was also235

the task in the user studies reported in this paper, where the participants used
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the OntoDebug2 debugging plug-in [28] of the popular ontology editing tool

Protégé [68].3 The underlying principles and algorithms of the debugging ap-

proach are, however, not limited to ontologies and can be applied for various

forms of knowledge representation and reasoning, see [20, 24, 62, 69].240

3.1. Model-based Diagnosis for Ontology Debugging

In the �eld of computer science, ontologies are the core of semantic systems.

Using a language like OWL [70], they formally describe the relevant concepts in

a domain as well as their properties and interrelations. Usually the main goal

of semantic applications is to use some form of logic-based reasoning to derive245

additional facts (entailments) from the given knowledge base.

The starting point for a debugging session normally is when we observe

a discrepancy between what we call the intended ontology (denoted as O∗)

and what we observe for a current version of an ontology O. In the biology

domain, the ontology engineer might, for example, expect that the ontology-250

based system is able to deduce from the given axioms that men are animals.4

If, however, it is inferred, e.g., that men and animals are disjoint, the underlying

KB is incorrect and the problem is to �nd one or more faults in the ontological

axioms. Generally, the possible discrepancies include the inconsistency of O, the

unsatis�ability of its classes or the presence or absence of certain entailments255

[28].

3.1.1. Example

We use the following example to illustrate how MBD techniques can be

applied to ontology debugging. Let our ontology consist of the following termi-

nological axioms T : {ax 1 : A v B, ax 2 : B v C, ax 3 : C v D, ax 4 : D v R}260

They de�ne that A is a subclass of B, B a subclass of C etc. In a speci�c domain,

this could for example mean that a MathStudent is a subclass of Student, which

2http://isbi.aau.at/ontodebug/
3https://protege.stanford.edu/
4See, e.g., http://owl.man.ac.uk/2003/why/latest/.
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is a subclass of UniversityMember etc.

Furthermore, the ontology contains two assertional axioms A = {A(v), A(w)},

which specify that v and w are instances of class A. In the practical application,265

we could have an assertion like MathStudent(john). Let us assume that the two

assertions are known to be correct. In this case, they should not be conside-

red as fault candidates in the debugging process. To this end, the knowledge

engineer would add these axioms to the background theory B [20]. That is, the

ontology would be partitioned into a possibly fault part O and a correct part270

B. In our case, O := T and B := A.

To make sure that the ontology is correct, the user can specify a set of positive

test cases P and a set of negative test cases N , where each test case is an axiom.

In our case, let P = {B(v)} and N = {R(w)}, which means that v should be

inferred to be of class B and w must not be inferred to be of class R. So, P275

comprises required entailments whereas N contains required non-entailments.

Unfortunately, our ontology O, together with the correct axioms B, entails

R(w), since A(w) holds and A transitively is a subclass of R. Formally, O ∪

B |= R(w). Given the positive and negative test cases, the ontology O as well

as the background theory B, one can then derive that it is not possible that280

all axioms of O are correct at the same time, i.e., at least one of them must

be faulty. In technical terms, we have determined a minimal con�ict set [13]

CS = {ax 1, ax 2, ax 3, ax 4} (which is also the only con�ict set in this example).

These computations can be accomplished, e.g., by means of a con�ict detection

algorithm [36].285

As a consequence, the engineer has to modify the ontology in a way that

the negative test cases are not entailed anymore, while at the same time the

positive test cases can still be satis�ed. Given the con�ict set CS, according to

[13], the possible minimal repair strategies (called diagnoses) in our case are

D1 : [ax 1] D2 : [ax 2] D3 : [ax 3] D4 : [ax 4]290

Intuitively, in the example, the removal of any individual axiom in O would

break the subclass relationship chain, and the undesired entailment would not

be present any more. However, based on the positive and negative test cases
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alone, an MBD algorithm cannot discriminate between the four diagnoses and

we cannot derive the true cause of the problem. The user can therefore either295

inspect all axioms manually, or provide more information, e.g., in terms of

additional test cases.

In our case, let us assume that the user speci�es an additional negative

test case B(w), i.e., it must not be entailed that w is of class B. With N =

{R(w), B(w)} and P = {B(v)}, a model-based debugging algorithm will return300

D1 as the only minimal diagnosis. Speci�cally, removing ax 1 from O will lead to

the e�ect that none of the unwanted entailments in N will be observed anymore.

Unfortunately, the modi�ed ontology O1 := O \ D1 does not entail the

positive test case anymore. Therefore, O1 must be somehow extended to lead

to the required entailments, in our case to the positive test case B(v). Since the305

debugger cannot know how to correctly extend the knowledge base, one strategy

is to use the required entailments P explicitly as an extension [20]. Hence, in

our example one would simply add B(v) to O1.

3.1.2. Formal Characterization: Diagnosis Problem

More formally, an instance of a diagnosis problem can be characterized as310

follows [14, 28].

De�nition 1 (Diagnosis Problem Instance (DPI)). Let O be an ontology (in-

cluding possibly faulty axioms) and B be a background theory (including correct

axioms) where O ∩ B = ∅, and let O∗ denote the (unknown) intended ontology.

Moreover, let P and N be sets of axioms where each p ∈ P must and each315

n ∈ N must not be entailed by O∗∪B, respectively. Then, the tuple 〈O,B, P,N〉

is called a diagnosis problem instance (DPI).

A diagnosis is then a set of axioms that are removed from the ontology,

with the particular requirement that the resulting ontology, together with the

background knowledge and the positive test cases, is (a) consistent and (b) does320

not entail the negative test cases.
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De�nition 2 (Diagnosis). Let 〈O,B, P,N〉 be a DPI. Then, a set of axioms

D ⊆ O is a diagnosis i� both of the following conditions hold:

1. (O \ D) ∪ P ∪ B is consistent (coherent, if required)5

2. (O \ D) ∪ P ∪ B 6|= n for all n ∈ N325

A diagnosis D is minimal i� there is no D′ ⊂ D such that D′ is a diagnosis.

Di�erent diagnosis computation algorithms exist; they can be distinguished

based on whether they generate diagnoses indirectly, i.e., via the computation

of con�ict sets, or directly, e.g., via divide-and-conquer techniques or through

the prior compilation of the problem to an alternative target representation like330

SAT [13, 20, 22, 40, 72, 73, 74, 75, 76].

3.2. Sequential Diagnosis

As the example shows, additional knowledge (in our case, test cases) can help

to further focus the debugging process and rule out possible fault candidates.

Not all test cases are, however, equally helpful. One of the goals of sequential335

diagnosis is therefore to automatically identify �good� or optimal test cases,

and to interactively ask the user to specify for each such test case, whether the

comprised axioms are entailments or non-entailments of the intended ontology.

Based on the answer, the debugger can then update its knowledge and repeat

the process until only one single diagnosis remains.340

3.2.1. Example

One way to assess the utility of di�erent possible test cases�which at the

end correspond to queries to the user�is to analyze the entailments of the

ontologies O∗i := (O\Di)∪P after the application of the di�erent diagnoses Di.

5An ontology O is coherent i� there do not exist any unsatis�able classes in O. A class

X is unsatis�able in an ontology O i�, for each interpretation I of O where I |= O, it holds

that XI = ∅. See also [71, Def. 1 and 2]
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In our example from above, the four ontologies O∗1 , . . . ,O∗4 have, among

others, the following entailments:

O∗1 : ∅ O∗2 : {B(w)} O∗3 : {B(w), C(w)} O∗4 : {B(w), C(w), D(w)}

These entailments can be obtained, e.g., with the help of the realization service345

[2] of a Description Logic reasoner [77, 78] and can serve us as test cases.

Let us assume that the user knows that D(w) must be entailed and adds it

as a positive test case, i.e., the diagnosis problem instance is now

DPI = 〈O, {A(v), A(w)}, {B(v), D(w)}, {R(w)}〉

Given this additional information, a model-based debugger will return only

one single diagnosis, D4 = [ax 4]. All other diagnoses, that existed for the

problem instance without the new test case, are no longer minimal diagnoses.

Speci�cally, applying diagnosis D1, D2, or D3 does not a�ect axiom ax 4, which is350

however, due to D(w) ∈ P , responsible for the unwanted entailment R(w) ∈ N .

Sequential diagnosis algorithms usually make analyses of this type to deter-

mine queries (test cases) that are likely to narrow down the set of remaining

diagnoses. At the end, the user only has to categorize such system-generated

queries and acts as an oracle for the debugger.355

3.2.2. Formal Characterization: Oracle and Queries

The terms oracle and query can be formally described as follows. An oracle

categorizes each element of a set of axioms either as a positive or a negative test

case, i.e., either an axiom has to be entailed or it must not be entailed.

De�nition 3 (Oracle). Let Ax be a set of axioms. Furthermore, let ans : Ax→

{P,N} be a function which assigns axioms in Ax to either the positive or the

negative test cases. Then, we call ans an oracle w.r.t. the intended ontology

O∗, i� for ax ∈ Ax both of the following conditions hold:

ans(ax ) = P =⇒ O∗ ∪ B |= ax

ans(ax ) = N =⇒ O∗ ∪ B 6|= ax
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Note that the function ans can either be total or partial. In the �rst case,360

the oracle (user) is a full domain expert and able to classify all queried axioms;

in the latter case, this might only be the case for some of the axioms.

Since our goal is to narrow down the set of possible diagnoses, a debugger

should propose only queries that guarantee the acquisition of relevant informa-

tion. In other words, each query should eliminate at least one diagnosis, given365

any answer of a full domain expert. Generally, a query consists of one or more

axioms and can be characterized as follows.6

De�nition 4 (Query). Let 〈O,B, P,N〉 be a DPI, D be a set of diagnoses for

this DPI, and Q be a set of axioms. Moreover, let QP
ans := {q ∈ Q | ans(q) = P}

and QN
ans := {q ∈ Q | ans(q) = N} denote the subsets of Q assigned to P and370

N by an oracle ans.

Then we call Q a query for D i�, for any classi�cation QP
ans, Q

N
ans of the

axioms in Q of a full domain expert oracle ans, at least one diagnosis in D is

no longer a diagnosis for the new DPI
〈
O,B, P ∪QP

ans, N ∪QN
ans

〉
.

Di�erent strategies were proposed in the literature to determine �good� or375

optimal queries, see e.g., [27, 80]. Usually, this is accomplished by computing a

set of diagnoses and by analyzing the e�ects of applying the di�erent diagnoses

with respect to a potential query. Complementary to this approach, a recent

work suggests novel ways of diagnosis computation to reduce the user's time

and e�ort for query answering [72].380

In general, a byproduct of the process of determining the queries is a quality

estimate for each resulting query. Such a quality measure can, for example, be

based on the expected information gain after the user has answered the query

6Whenever we speak of a �query� throughout this work, we mean a query in terms of

De�nition 4, which must not be confused, e.g., with the concept of a query in terms of a query

language such as OWL-QL [79]. In our scenario, queries are answered based on the knowledge

of an oracle about the intended ontology, with the aim to locate faults in an ontology. Queries

in terms of query languages are answered based on the knowledge speci�ed in an ontology,

knowledge graph, etc. in order to �nd answers to questions of relevance.
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[21], on reinforcement learning [81], or on criteria [54, 82] adopted from the

�eld of active learning [83]. Finally, since the generation of queries requires385

potentially costly calls to an underlying reasoner, approaches exist that aim to

minimize the number of these computations [20, 24, 26, 54].

3.3. The OntoDebug Plug-In to Protégé

The described concepts for sequential and test case based MBD for ontologies

were implemented in the OntoDebug plug-in of the widely-used Protégé onto-390

logy editor. There are two main situations when the user of the tool�possibly

after some maintenance activities�might initiate a debugging session with the

OntoDebug plug-in. First, the built-in reasoner of Protégé might detect that

the given ontology is faulty, e.g. inconsistent or incoherent, in itself.7

Second, even if the ontology in itself is consistent and coherent, the user395

might want to ensure that the implemented ontology does correspond to the

intended one by specifying one or more test cases. In case the test cases lead to

the disclosure of unexpected entailments, an inconsistency or an incoherency, it

is obvious that there is something wrong with the ontology.

One possible �rst step for the user when starting the debugging process with400

OntoDebug�independent of how the user detected that there is a problem�is

to tell the system which parts of the ontology are de�nitely correct (and thus

part of the background knowledge). This task can be accomplished using the

functionality at the right-most side of the user interface of OntoDebug shown

in Figure 1. In the example shown in the �gure, the user works on problems405

of the �Koala� ontology of the Protégé project, an ontology that was created

for educational purposes and contains typical problems that can occur during

ontology development. Speci�cally, in the example, the user has declared among

other things that the axiom �BA (bachelor of arts) is of type Degree� is de�nitely

7In contrast to other application areas of model-based diagnosis techniques�such as fault

localization in electronic circuits [13, 21]�inconsistencies can be present in the context of

ontology debugging problems without any initially given test cases (observations).
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correct.410

Once this optional step is done, the user can start the model-based debugging

process. The tool, as mentioned above, then supports two general strategies.

• First, the user can inspect the list of diagnoses returned by OntoDebug to

locate the fault and add additional test cases in case the list of diagnoses

contains too many elements. Generally, the idea is that the provision of415

additional, carefully designed test cases, will help to narrow down the set of

possible diagnoses, i.e., the possible causes for the problems in the ontology.

In the example shown in Figure 1, the user has speci�ed one positive test case

(�Student is a subclass of Person�) and a negative one (�Person is a subclass

of Marsupials�), using the sub-window in the middle of the screen.420

• The second supported debugging strategy is the query-based one. In this

case, the tool will�based on the inconsistent (incoherent) ontology or the

failing test cases�compute the �rst query to the user. In our example, the

system determined a query consisting of two axioms shown in the top-left

sub-window of the user interface. The two axioms to be categorized by the425

user are �KoalaWithPhD is a subclass of Koala� and �KoalaWithPhD is a

subclass of Person.� The user can answer the query by using the green

and red plus and minus symbols (or leave some axioms uncategorized), and

then submit the answer to the system. The system adds the user's feedback

to the �Acquired Test Cases� and then restarts the computations using the430

additionally provided information. In case the information was su�cient to

identify one single diagnosis as the cause of the problem, the user is pointed

to the faulty parts of the ontology. Otherwise, the system computes a new

query to be asked to the user and the cycle repeats until only one diagnosis

remains.435

Generally, one main di�erence is that in the test case based approach the

users have to think by themselves about good test cases, while in the case

of interactive debugging, the responses by the users to the system-generated
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Figure 1: Interactive ontology debugging session with the latest version of OntoDe-

bug.

queries are taken as additional test cases. In this latter case, the selection of

the query, and correspondingly the test case, is based on an internal reasoning440

process that ensures that the most informative queries are chosen.

4. Research Questions

The main promise of interactive, query-based approaches is that they are

able to systematically guide users (e.g., knowledge engineers or domain experts)

through the debugging process and that after the interactive process the true445

cause of the observed discrepancies is found. In contrast, there is limited support

for users in the more traditional model-based debugging setting, where the users

have to provide test cases manually in order to incrementally narrow down the

set of fault candidates.

As discussed in Section 2, computational analyses�such as measurements450

of time or an analysis of the number of required queries�can be insu�cient
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to inform us about the usability and acceptance of the corresponding tools, as

such measurements are based on certain assumptions. Such measurements can

also not tell us in which ways query-based debugging is advantageous over a

test-case based approach.455

To address these open questions, we conducted a number of controlled (labo-

ratory) studies, mainly consisting of ontology debugging exercises. We focus on

the following main research questions in the context of model-based debugging:

RQ1 Is the debugging process more e�ective when users are supported by a

query-based debugging tool than when test cases are the only means to460

locate faults?

RQ2 Is the process more e�cient when users are supported by a query-based

debugging tool?

RQ3 To what extent do the assumptions of MBD debugging techniques hold?

RQ3.1 For the case of approaches based on test cases and candidate ran-465

king: Do users have �perfect bug understanding�, i.e., do they

reliably recognize the true cause of a discrepancy within a list of

diagnoses?

RQ3.2 For the case of the query-based approach: Do users make errors

when acting as oracles?470

The following main studies were designed and executed.

• In our preliminary study (Study 1 ), our goal was to gauge the general

usefulness of a test case based debugging approach. We speci�cally also

explored the importance of the ranking of the fault candidates in this

experiment (RQ3.1). The study also served us to further improve the475

design of the main study (Study 2 ).

• In Study 2, we investigated the e�ectiveness and e�ciency of the query-

based and the test case based debugging approach (RQ1 and RQ2). In

that context, we also examined the question of oracle errors (RQ3.2).

19



Additional pen-and-paper exercises were conducted in the context of both480

Study 1 and Study 2 with the goal of deepening our understanding of the (types

of) errors that occur to users while debugging. These insights are then used to

devise a heuristic prediction model for such errors (RQ3.2). We discuss Study

1 in Section 5, Study 2 in Section 6, and the additional studies in Section 7.

5. Study 1 : Investigating MBD-debugging With Test Cases485

5.1. Design of the Pre-Study

5.1.1. Task

The task of the participants in this study was to �nd the faulty axioms

(true diagnosis) in a given faulty ontology (i) based on a provided description

of the intended ontology in natural language (ii) using the OntoDebug tool490

described above (iii) by creating test cases manually (the query-based debugging

functionality was not available to the users). The participants were explicitly

instructed to (iv) constantly inspect the list of possible diagnoses throughout

the debugging session and to (v) mark the true diagnosis once they detected

it in the list. After a diagnosis was marked, the debugging session ended. In495

Figure 1, the list of diagnoses is shown in the bottom-left sub-window labeled

with �Possible Ontology Repairs�.

5.1.2. Ontologies

In order to make sure that the outcomes regarding the usefulness of the

test case based debugging approach do not depend on the speci�cs of a certain500

ontology, two di�erent ontologies describing two di�erent domains were used in

the study. The �rst one corresponded to a (simpli�ed) model of the �Klagenfurt

University� (university domain) and the second one was a real-world knowledge

base made available by the �Communal IT Center of Carinthia� (IT domain).

We prepared the ontologies for the study by injecting �ve faults into each of505

them such that the resulting ontologies were inconsistent and incoherent in

themselves. That is, for both ontologies the true diagnosis included �ve faulty
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axioms (as shown in Table 1). The designed ontologies were similar in their

size and complexity. For example, both included about 50 classes, 90 subclass

relationships, and 20 object properties. Moreover, both included roughly equally510

complex logical formalisms and used the full expressivity of the Description

Logic SROIQ (OWL 1.1 [84]) [2, 85].

Table 1: Faulty ontology axioms (university domain) in OWL Manchester Syntax

[86].

Nr. Faulty Axiom

1 Department SubClassOf offers only Course

2 Library SubClassOf offers only Visitation

3 Research_Event SubClassOf has_Speaker only (Person and

(has_Degree some Degree))

4 Assembly_Hall DisjointWith Room

5 Department DisjointWith Room

5.1.3. Participants

We recruited 29 participants for the study. All participants were computer

science students of our university and were enrolled in an ongoing master pro-515

gram course on knowledge engineering. During this course, the participants,

who already had a background in logics, were introduced to model-based de-

bugging, formal ontologies, Description Logics, and the OWL language. The

participants also had �rst experiences in designing ontologies with Protégé and

debugging them with OntoDebug. Overall, the participants were very homoge-520

neous with respect to their knowledge and background.

5.1.4. Independent Variables

We considered two independent variables, the ontology to be debugged (uni-

versity vs. IT ) and the position (visible vs. not visible) of the true diagnosis in

the list of diagnoses returned by the debugger. Each participant was randomly525

assigned to one ontology and one setting for the position of the true diagnosis.

Similar to the work in [30], we varied the position to assess the importance
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of the ranking of the diagnoses returned by the system. Speci�cally, in the

visible case, the true diagnosis, which comprised all actually faulty axioms of

the ontology, was placed within the top three diagnoses and always visible to530

the user. In the other case (not visible), the true diagnosis was further down the

list. Generally, the diagnosis problem was designed in a way that the initial list

of diagnoses before further test cases are speci�ed is comparably large, including

over 150 diagnoses in each case.

5.1.5. Dependent Variables535

We made a variety of automated, objective measurements while the parti-

cipants were executing the task, like the needed time, the number of user in-

teractions (mouse clicks) in the debugger, and the number of diagnoses still in

the list of diagnoses when the participants submitted the diagnosis which they

thought is the correct one. In the context of Study 1 the most important auto-540

mated measurement was on the correctness of the debugging process in terms

of (i) the fraction of correctly identi�ed faulty axioms and (ii) the fraction of

users who correctly identi�ed all �ve faulty axioms (i.e. the true diagnosis).

Moreover, the participants had to specify their subjective degree of belief

(con�dence) in having solved the fault localization task correctly. For this, they545

should use a range between 0 (very uncertain that the marked diagnosis is the

true one) and 100 (certain that the marked diagnosis is the true one).

5.2. Experiment Execution

The study was conducted in one of the computer labs of our university. The

required software was pre-installed on the lab computers. All of the computers550

were identically equipped. After being informed about the tasks of the study

and after the participants had declared their consent, they were provided with

detailed material on paper. The handout essentially included a description of

the domain that was incorrectly modeled by the ontology the participants had

to debug. Thus, the paper characterized the intended ontology as discussed in555

Section 3.

22



The description was given as a natural language text, with important con-

cepts highlighted. In particular, class and property names in the ontology were

italicized and underlined, respectively. An example of such a description from

the university domain is the following:560

From an organizational point of view, the University is subdivided into

several OrganizationalUnits. Each OrganizationalUnit employs some O�-

ceEmployee(s) and some Teacher(s), has some Room(s) which is/are (an)

O�ce(s), is directed by exactly one Director and is located in some Buil-

ding. Two special types of OrganizationalUnits are the Directorate and the565

HumanResourcesUnit.

Before the participants started their task, they received another brief tutorial

on how to debug an ontology with the OntoDebug tool. They used the �Koala�

ontology that is available in Protégé (cf. Sec. 3.3) for that purpose. During

the experiment, the participants were not allowed to talk to each other. The570

participants were supervised by three instructors, who were present to answer

questions in case of problems with the software.

5.3. Outcomes of Study 1

The measurements obtained in Study 1 are summarized by Figures 2 and

3. As mentioned above, the main question of this pre-study was (i) to gauge575

the general usefulness of MBD-debugging with test cases and (ii) to assess the

importance of the ranking of the diagnoses. Furthermore, a side goal was to

obtain experiences regarding the study design for the main study (Study 2 ).

5.3.1. General Usefulness of Model-based Debugging

On average, the participants took about 28 minutes and 81 mouse clicks580

for the task before they submitted their solution.8 Overall, the participants

correctly identi�ed as many as 77% of the problematic axioms,9 i.e., almost

8The standard deviation was 12.6 minutes (time) and 35 mouse clicks, respectively.
9The standard deviation was 21%.
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four out of the �ve injected faults shown in Table 1 were eliminated. From the

29 participants, 10 (34.4%) correctly identi�ed the true diagnosis, i.e., all �ve

faulty axioms (cf. Figure 2).585

Overall, we �nd this result very positive, given the complexity of the task.

The study clearly indicates that model-based debugging is actually helpful for

knowledge engineers. Since we did not observe any statistically signi�cant dif-

ferences between the observations that were made for two di�erent ontology

debugging problems (university and IT ), we are con�dent that the usefulness590

of the approach is not limited to just one domain.

There were various reasons why some participants did not successfully �nd all

faults. A main issue appeared to be a certain lack of attentiveness and precision

when reading the natural language speci�cation of the intended ontology. Based

on these observations, we revised some of the speci�cations, e.g., by removing595

possible ambiguities, when designing Study 2. To some extent, it also seemed

that some participants did not properly understand the semantics of certain

elements of the knowledge representation language.

5.3.2. Importance of Ranking of Candidates (RQ3.1)

In the context of RQ3.1, our goal was to investigate if the capability of600

a debugger to rank the true diagnosis higher in a list of candidates directly

translates into a more e�ective debugging process. Table 2 shows in how many

cases the true diagnosis�which comprises all �ve injected faults�was found,

depending on whether it was among the top-ranked (visible) candidates or not.

Table 2: Relationship between full correctness of the debugging task and visibility of

the true diagnosis in the list of diagnoses presented to the participant.

true diagnosis visible

yes no

true diagnosis found
yes 5 5

no 9 10

Interestingly, the observations shown in Table 2 do not provide evidence that605
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Figure 2: Overview of the outcomes of Study 1. The �gure shows the measurements

for the dependent variables for all 29 debugging sessions, grouped by the position

(�visible� left, �not visible� right) of the true diagnosis in the diagnoses list, and sorted

from low to high con�dence. The labels along the x-axis indicate whether the true

diagnosis was found (�Y�) or not (�N�) during the respective session. Variables plotted

w.r.t. the right y-axis are underlined.

the users were more e�ective when the true diagnosis was always visible.10 Such

a non-e�ect of varying the position of the fault in a ranked list was also reported

in [30].

Moreover, 10 of the 14 participants of the group where the true diagnosis was

ranked highly continued specifying test cases until only one diagnosis was left610

in the list (cf. Figure 2)�even though all participants were explicitly instructed

to constantly inspect the list of diagnoses and mark the true diagnosis once

they detected it in the list. A large number of participants therefore did not

recognize the actual fault even though it was shown to them.

These �ndings challenge the assumption of a �perfect bug understanding�615

of the users, i.e., they do not always immediately identify a fault when they

are pointed to it. In other words, even if the true diagnosis was visible to the

participants, they (i) did not recognize it in the majority of the cases and (ii) did

10 This is supported by Fisher's Exact Test [87] (p-value = 1.00).

25



Figure 3: Vioplots showing the distribution of the dependent variables in Study 1.

not identify it more often than other participants to which the true diagnosis

was not (always) visible. As a result, fault ranking metrics should therefore620

not be considered as the only measure when di�erent algorithmic debugging

strategies are compared [30].

5.3.3. Additional Observations (Study 1)

Positive test cases are more reliable: From the 244 test cases provided by the

participants (8 on average per debugging session), the majority (71%) were625

positively formulated, i.e., they described required entailments. The participants

therefore seemed to feel more comfortable specifying things that must be entailed

than those that must not. An analysis of the fault rates for positive and negative

test cases indeed con�rmed that negative ones, i.e., formulated non-entailments,

were signi�cantly11 more often faulty (24% vs. 10%, see Table 3). This result630

suggests that it is better to ask users questions with a bias towards the positive

answer12 in query-based KB debugging, in order to minimize the occurrence of

oracle errors.

Users can be overcon�dent: The participants of the study were partially over-

con�dent (cf. Figure 2). The average con�dence value expressed by the partici-635

11According to a Chi-Squared Test with α = 0.01 (p-value = 0.00496) as well as a (two-

tailed) Fisher's Exact Test with α = 0.01 (p-value = 0.008).
12A �bias towards the positive answer� means that the estimated probability of getting a

positive answer to the question is higher than that of a negative answer.
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Table 3: Relationship between the type of formulated test case and its faultiness.

type of test case

positive negative

test case faulty
yes 18 17

no 156 53

pants regarding the correctness of the identi�ed diagnosis was at about 83% (cf.

Figure 3). While this roughly corresponds to the percentage of the identi�ed

faults, only 34% of the participants have correctly located all �ve faults. Inte-

restingly, the con�dence of those participants who did not �nd the true diagnosis

was even slightly higher than the con�dence of the successful participants.640

Hence, subjective con�dence estimates have to be handled with care [81]

when they are intended to be used to guide the debugging process [27].

Users consider themselves as imperfect oracles: We found that only 31% of all

users, and an even lower 20% of the ones that successfully found all faults, were

fully con�dent about the correctness of their debugging actions (cf. Figure 2).645

This teaches us that humans generally do not regard themselves as perfect

oracles for knowledge engineering tasks, which questions the frequently made

�perfect oracle� assumption. We pick up on this discussion again in Sec. 6.3.4

and Sec. 7.

Completion time and user activity as success predictors (cf. Figure 2): Partici-650

pants who correctly identi�ed the true diagnosis required on average more time

(33 minutes) and speci�ed more test cases (10). However, they needed fewer in-

teractions (71 clicks) than those that submitted a wrong diagnosis (26 minutes,

8 test cases, 87 clicks). This indicates that successful users worked more tho-

roughly and were more persistent in their testing activity. Unsuccessful ones, in655

contrast, required more interactions as they more frequently edited, deleted or

re-added test cases. An atypically high editing activity can thus be considered

as an indicator that a user requires more assistance for the given task.
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6. Study 2 : On the Usefulness of Query-based Debugging

Having established that model-based debugging leads to a good debugging660

performance, the goal of Study 2 was to answer our main research questions

RQ1 and RQ2 on the e�ciency and e�ectiveness of query-based debugging as

opposed to a test case based approach. In other words, do users need less

time/e�ort when supported by a query-based debugger (e�ciency) and do they

�nd more faults (e�ectiveness)?665

6.1. Design of the Study

6.1.1. Task

As in the pre-study, the general task of the participants was to �nd the

actually faulty axioms (true diagnosis) in given faulty ontologies (i) based on

a provided description of the intended ontology in natural language (ii) using670

the OntoDebug tool. However, now (iii) every participant had to debug two

ontologies, one using the query-based and the other using the test case based

approach.

6.1.2. Ontologies

Similar ontologies were used as in the pre-study�one describing a univer-675

sity, and one describing an IT domain, and both again corresponding to the

Description Logic SROIQ. Again, we prepared the ontologies for the study by

injecting a number of faults into each of them, leading to both inconsistency and

incoherency. However, the ontologies were roughly 20% larger in terms of their

size (e.g., number of axioms and classes) than the ones used in Study 1 ; still, the680

size and complexity of both ontologies was roughly equal. The ontologies were

enlarged to achieve a higher number of fault candidates. Concretely, the size of

the initial list of diagnoses for both ontologies was now over 1000. This made

the diagnosis problems objectively harder than in the pre-study. The reason for

this was to compensate for the lower number of participants (23) in Study 2,685

which makes it somewhat harder to achieve statistically signi�cant results. Be-

cause, if any e�ects (e.g., regarding time or user interactions) of employing the
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query-based debugging are present, then they are likely to be larger for harder

debugging problems.

6.1.3. Participants690

For Study 2 we could draw on 23 participants. Again, all of them were atten-

dees of a university master program course on knowledge engineering. However,

the focus of the course was now shifted towards Semantic Web technologies to

achieve a better preparation of the students for the study. As a consequence,

the participants of Study 2 had a better education on model-based diagnosis,695

formal ontologies, ontological reasoning, and the used knowledge representa-

tion language than those of Study 1. Moreover, they had more experience with

Protégé and OntoDebug.

6.1.4. Independent Variables

The two independent variables we used were the ontology to be debugged700

(university vs. IT ) and the debugging strategy (query-based vs. test case based).

We used a within-subjects experiment design in this study, which involves each

participant consecutively working on both ontologies and consecutively using

both debugging strategies. Thus, we randomly assigned each participant to one

of the following con�gurations:13705

• Task 1: university with queries. Task 2: IT with test cases.

• Task 1: university with test cases. Task 2: IT with queries.

• Task 1: IT with queries. Task 2: university with test cases.

• Task 1: IT with test cases. Task 2: university with queries.

6.1.5. Dependent Variables710

In terms of measurements, we recorded the same aspects as in Study 1 (see

Section 5.1.5), i.e., time, number of user interactions, number of diagnoses still

13Note, the random variation of the order of the tasks is important to avoid systematic

learning e�ects.
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Figure 4: Overview of the outcomes of Study 2. The �gure shows the measurements

for the dependent variables for all 46 debugging sessions (2 per user), grouped by the

used debugging strategy (�queries� left, �test cases� right; i-th x-axis entry starting

from the left in the �queries� block refers to the same user as i-th x-axis entry starting

from the left in the �test cases� block). Records are sorted by the number of mouse

clicks of the �test cases� sessions from low to high. The labels along the x-axis indicate

whether the true diagnosis was found (�Y�) or not (�N�) during the respective session.

Variables plotted w.r.t. the right y-axis are underlined.

in the list, correctness (fraction of faulty axioms found, fraction of users �nding

true diagnosis), and con�dence.

6.2. Experiment Execution715

The experiment execution was exactly the same as in Study 1, see Section 5.2.

6.3. Outcomes of Study 2

6.3.1. E�ectiveness of Query-based Debugging (RQ1)

To assess the e�ectiveness of the two debugging strategies, we analyzed

how many of the faulty axioms were successfully identi�ed by the participants.720

Across both ontologies, the participants on average found 91.3% of the faults

when they were supported by the query-based debugger and 89.1% when the

debugging process was based on test cases (as in Study 1 ).14 Figures 4 and 5

14The standard deviation amounts to 19% (queries) and 23% (test cases).
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show the (distribution of the) achieved success rates for both debugging techni-

ques. The di�erences were not statistically signi�cant. We therefore conclude725

that in this experiment, the query-based approach did not further increase the

e�ectiveness of the debugging process.

Page 1 of 1
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Figure 5: Boxplots showing the distribution of the % of identi�ed faulty axioms per

debugging session in Study 2 for the query-based vs. the test case based approach.

Note, however, that in both cases the success rate was higher than in Study 1,

where about 77% of the faults were identi�ed by the participants. We attri-

bute this to the fact that�based on the learnings from Study 1�we were more730

successful in motivating the participants to work more carefully. In addition,

the participants of Study 2 were, as mentioned, better trained in ontology engi-

neering than those of Study 1. As a result, it became di�cult to greatly increase

the already high success rate (89.1%) obtained by participants who relied on

test case based debugging.735

Like in Study 1, we also looked at how many of the participants could cor-

rectly identify all faulty axioms (i.e. the true diagnosis) in each ontology. We

again found no statistically signi�cant di�erence between the two debugging

approaches (cf. Table 4). Generally, across the ontologies, the fraction of fully

successful trials was much higher than in Study 1. About 72% of the partici-740

pants were able to �nd all problems in the respective ontologies. Interestingly,

we found di�erences for the two ontologies this time. Over 85% of the partici-

pants were able to �nd all faults in the university ontology, with no signi�cant

di�erences with respect to the debugging method. However, in the IT domain,
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only 57% were fully successful. A potential reason for this result could lie in745

the prior knowledge of the participants with regard to the two domains. More

research is however required to better understand this phenomenon.

Table 4: Relationship between the used debugging approach and the success in �nding

the true diagnosis.

debugging approach

queries test cases

true diagnosis found
yes 17 16

no 6 7

6.3.2. E�ciency of Query-based Debugging (RQ2)

To assess if the query-based debugging technique helps users to accomplish

the debugging task faster and with less e�ort, we compared both the overall750

time needed by the participants and the number of required user interactions

(mouse clicks) in the debugging tool across the two debugging strategies. The

(distribution of the) time and user interaction measurements throughout Study 2

is summarized by Figures 4, 6 and 7.

Participants who were supported by the query-based debugging tool on755

average needed 24.9 minutes. When using test cases without query support,

the average time was 34.0 minutes15, which amounts to an overhead of 37%.

Looking at the number of required user interactions, the di�erences are even

stronger. With the query-based debugging tool, the number of mouse clicks

was more than halved and reduced from about 139 to 64 clicks on average.16760

The di�erences regarding both time and interactions were statistically signi�-

cant according to a Wilcoxon Rank-Sum Test;17 in the case of time to the level

15The standard deviation comes to 11 minutes (queries) and 19 minutes (test cases).
16Standard deviation: 25 clicks (queries) and 90 clicks (test cases).
17Since literature is not always consistent when referring to Wilcoxon's test(s), note that we

stick to the description of the test(s) given in [87]. Further note that Wilcoxon's Rank-Sum

test compares independent samples whereas Wilcoxon's Signed Rank test compares paired

data.
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α = 0.05 (p-value = 0.0418), and for clicks to the level α = 0.00001 (p-value <

0.00001).18

Overall, we conclude from the experiments that query-based debugging sup-765

port is bene�cial in terms of the e�ciency of the debugging process.
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Figure 6: Vioplots showing the distribution of the debugging task completion times

in Study 2 for the query-based vs. the test case based approach.
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Figure 7: Vioplots showing the distribution of the number of user interactions to

complete the debugging task in Study 2 for the query-based vs. the test case based

approach.

18Also, when viewing the data as paired (each participant did use both queries and test

cases, but each for a di�erent ontology), the results in both cases are highly signi�cant (for

α = 0.05 and α = 0.0001, respectively).
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6.3.3. Additional Observations (Study 2)

Users feel equally con�dent using both debugging approaches: While again over-

con�dent in general (cf. Section 5.3.3), the participants were approximately

equally con�dent about having made no mistakes in the debugging process at770

all, both when using queries and test cases. Speci�cally, the average con�dence

in case of query assistance was 93% and 92% when using test cases.19

Intuitive focus on mere query answering: Interestingly, without giving the par-

ticipants who used the query-based debugger any instructions to do so, all of

them continued answering queries until a single diagnosis was left (cf. Figure 4).775

Apparently, they therefore did not rely on the list of diagnoses when using the

query-based approach. When relying on test case based debugging, in contrast,

more than one quarter of the users selected their solution from a list of more

than one diagnosis. In other words, at a certain point they stopped specifying

further test cases and considered it more e�cient to inspect the candidate list.780

We interpret this as a sign that test case based debugging was more tiring, and

thus more demanding for the users than query answering.

Query answering is more e�cient than test case speci�cation: As both the

query-based and the test case based approach result in the addition of a new

test case per iteration20, we compared the time users needed per answered query785

and per speci�ed test case, respectively. The result is very clear (cf. Figure 8).

The average test case speci�cation time (≈2:20 min) was almost 60% (and sta-

tistically signi�cantly21) higher than the average query answering time (≈1:30

min).22 This shows that it is more e�cient to classify pre-selected axioms as

(non-)entailments than to think about speci�c axioms and classifying them.790

Overall, this result demonstrates the potential of query-based sequential diag-

19Standard deviation: 8% (queries) and 17% (test cases).
20In the query-based scenario the test case is selected by the debugger and classi�ed (as

positive or negative) by the user, whereas in the test case based scenario the test case itself

and its classi�cation is chosen by the user.
21According to a Wilcoxon Rank-Sum Test with α = 0.001 (p-value = 8.96 ∗ 10−13).
22Standard deviation: ≈1:30 (queries) and ≈2:50 (test cases).
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nosis approaches to reduce debugging e�orts.

Query optimization pays o�: The average number of queries (11.6) that had to

be answered until the true diagnosis was found by the users was lower than the

average number of test cases (13.1) the users speci�ed to isolate the true diag-795

nosis.23 This shows that automatic (and optimized24) test case selection tends

to be more e�cient than manual test case speci�cation. In other words, the au-

tomated approach is better than users in selecting test cases that discriminate

(well) between the candidates.
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Figure 8: Vioplots showing the distribution of the time participants required to

specify a test case vs. the time they required to answer a query in Study 2.

6.3.4. Existence of Oracle Errors (RQ3.2)800

Both in Study 1 and Study 2, we observed that it is not uncommon that

participants make errors when specifying test cases and when answering the

system's queries. While in either case the large majority of the inputs provided

by the participants was correct, at least one mishap occurred to a considerable

fraction of participants in both studies. Even in the main Study 2, where the805

participants were instructed more intensively and where the participants had

a better formal education on ontology engineering, about one quarter of the

participants made at least one mistake. In the context of the study, mistakes

23Stadard deviation: 3.3 (queries) and 4.8 (test cases).
24We used entropy-based query optimization as described in [27] in our study.
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were made equally for the test case speci�cation and the query answering tasks.

Our observations therefore point to a largely open issue in algorithmic testing810

and debugging approaches, which are usually based on the assumption that

there are no oracle errors. Only a few works exist in the literature, which

speci�cally address the problem of wrong user inputs, e.g., in the context of

spreadsheet testing [88], Spectrum-based Fault Localization procedures [89], or

general software testing [90].815

Next, in Section 7, we will take �rst steps to address this largely open rese-

arch question in the context of query-based knowledge base debugging. Speci�-

cally, we will describe an initial prediction model that allows us to estimate the

probability of oracle errors depending on the complexity of the queries asked to

the user.820

7. Predicting Oracle Errors based on Query Complexity

When designing a query-based debugging method, di�erent options are avai-

lable with respect to what types of queries are asked to the users. A closer look

at the wrong user inputs in Study 1 and Study 2 revealed that from the faulty

test case speci�cations about two thirds had a non-trivial syntactic structure,825

involving, for example, complex class expressions with intersection, union, or

complement operators, as de�ned in the OWL speci�cation [70]. This supports

the intuitive assumption that the syntactic complexity of the required inputs is

correlated with the probability of a user error.

The goal of the work described in this section is to develop a �rst model830

that allows us to estimate the probability of user error for a given query in

a quantitative way. The model can then be used by designers of interactive

debugging systems, for example, in order to vary the complexity of the queries

depending on the assumed expertise of the user. Alternatively, the model can

be used to provide additional hints to the user in case of complex queries.835

The proposed model was developed and evaluated with the help of two ad-

ditional studies, which were performed in the context of Study 1 and Study 2.
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The �rst of these studies, termed Study E1, aimed at (i) verifying the conjecture

that an axiom's syntactic complexity has indeed a signi�cant impact on how

well it is understood, and (ii) collecting data as a basis for the design of the840

prediction model. The second study, termed Study E2, was conducted to assess

the utility of the model.

7.1. Collecting Data for the Prediction Model (Study E1)

We designed a pen-and-paper study, where the task of the participants�the

same ones as in Study 1�was to determine the correct translation of axioms845

written in OWL (Manchester Syntax [86]) into natural language and vice versa.

Each participant was provided with ten axioms that were randomly chosen from

a larger pool of manually-prepared axioms. The axioms themselves, which again

related to the university and IT domain, were designed to have di�erent com-

plexity levels. A simple axiom, for example, would be X SubClassOf Y, where850

X and Y are class names from the respective domain. More sophisticated axi-

oms involved complex class expressions such as not(X and Y) or p some (X or

Y) which use, e.g., property restrictions and di�erent logical operators. An ex-

ample of a more complex axiom would be UndergradStudent SubClassOf not

(hasDegree some Degree).855

For each given axiom, the participants were provided with three possible

translations, where only one of them was correct. They then had to assign

con�dence scores to these answer options that express their degree of belief in

the correctness of the respective answer.

To verify our hypothesis that syntactically more complex axioms are more860

di�cult to comprehend, we proceeded as follows. First, we gathered the con�-

dence scores the participants gave to the correct answers for all the translation

tasks. Next, we asked two experts to classify the syntax patterns that occurred

in the exercises as either particularly hard or particularly easy or neither. We

then compared the recorded con�dence scores between the group of hard and865

the group of easy syntax patterns. The average score was 0.55 for the former

and 0.95 for the latter group. The statistical signi�cance of this di�erence was
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revealed by a Wilcoxon Rank-Sum Test with level α = 0.01 (p-value = 0.0015).

That is, axioms of higher complexity indeed led to a lower success rate of the

translation task. Overall, this �nding supports the relevance of a syntax-based870

prediction model.

To obtain further insights regarding which syntactic features cause di�cul-

ties for the users, we manually inspected all answers of the participants. As a

result, we identi�ed the following major factors that increase the complexity for

the participants: (a) nesting of class expressions, (b) negation in general, (c)875

negated expressions that are not represented in �negation normal form� (NNF),

i.e., which include negated complex class expressions.

7.2. Design of the Prediction Model

Based on the lessons learned from the di�erent studies and on our researcher

expertise, we constructed a rule-based prediction model, which takes a query in880

OWL as an input and returns a score that expresses how likely it is that the

query will be properly understood. Viewed di�erently, the model will tell us the

likelihood of an oracle error for the given query.

The idea of the model is to recursively reduce a query to the axioms it consists

of, and to then decompose these axioms to the class expressions they comprise.885

These expressions are in turn successively split into smaller sub-expressions, and

so forth, until atomic classes are obtained. Based on the encountered syntactic

structure, the model uses respective weights to compute the �nal query score

when the recursion unwinds. The weights are de�ned based on the observations

of our study.890

For instance, the model assigns X SubClassOf Y a score of 1 (maximum �ea-

siness�) because such axioms were always correctly understood by the partici-

pants. In contrast, the score for X SubClassOf not (p some Z) would be 0.25

due to the involved negation and property restriction. Note that the axiom

X SubClassOf p only (not Z) that expresses the same fact but is written di�e-895

rently in NNF would be indeed rated as being easier (score 0.29) by the model,

which is in accordance with our observations.
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To initially validate our model we performed a correlation analysis based

on Study E1. The analysis revealed that the predictions for the exercises from

Study E1 are well in line with the success rates we had observed in the study900

(Pearson's r = 0.53). For the sake of brevity, we only sketched the main idea of

the model here. The exact de�nition of the model can be found in Appendix A.

7.3. Evaluation of the Prediction Model (Study E2)

Study E2, which involved the participants of Study 2, was a pen-and-paper

exercise that we conducted to validate the predictive power of our model di-905

rectly, i.e., through a query answering task. In the study, each participant was

provided with a natural language description of a university domain and 25

queries in OWL Manchester Syntax, each consisting of one axiom. The queries

were randomly selected from a pool of logical axioms ax i involving 51 syntactic

patterns of di�erent complexities, with scores predicted by our model ranging910

from 0.05 (hard) to 1 (easy). For each query, the task was to decide if it is true

or false in the given domain. The correct answers to all 25 questions were given

in the natural language text, i.e., the participants did not have to make any

assumptions to correctly answer the queries. The participants were again asked

to provide, for each query, on a scale from 0 to 100, (i) a di�culty assessment915

and (ii) their con�dence in the given answer.

From the subjects' questionnaires, we extracted, grouped by syntactic pat-

tern, (a) the percentage of correct answers, (b) the users' average con�dence in

their answer, and (c) the average subjective di�culty. A comparison of these

three response variables with the model predictions yielded high correlation920

coe�cients of 0.36, 0.52, -0.70 for (a), (b) and (c), respectively. Moreover, to

assess the statistical signi�cance of the model's predictive power, we ranked all

queries according to their score as per our prediction model and performed a

median split of the axioms into two groups, one including the easy and one the

hard syntactic patterns. An analysis of the response variables (a), (b) and (c)925

for these two groups revealed that there is a signi�cant between-group di�e-

rence (Wilcoxon Rank-Sum Test, p-values < 10−5, < 10−5 and 0.0197) which
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con�rms the predictive power of the proposed model. As a result, axioms that

were estimated to be hard according to the model (i) in fact led to a higher

failure rate, (ii) were actually perceived to be harder, and (iii) resulted in a930

lower con�dence of the users in their answers. The same relationship holds in

the other direction.

As a side note, the prediction model, in case it did not exactly predict the

observed success rate, tended to underestimate the success probability. As a

consequence, whenever the model predicted that a query is easy (i.e., had a935

score close to 1), it actually proved to be very well understood by the users.

Hence, using methods in a query-based debugger that are able to generate �easy

questions� with respect to such a prediction model is expected to be bene�cial

to avoid oracle errors. Examples of such methods can be found in [25, 26, 80].

7.4. Discussion940

Overall, our results indicate that our model, although still preliminary, is

able to assess the complexity of a given query with good reliability. Clearly,

more research is required to further develop the model and to validate it for

other problem settings. Nonetheless, we see the results as an important �rst

step in the direction, which can be used when designing an interactive debugging945

environment.

Furthermore, the model can also be used for other purposes related to debug-

ging, e.g., as an estimator of the prior fault information provided to a debugger.

For instance, a higher fault probability could be assigned to axioms in the KB

that are rated as hard by the prediction model. As pointed out and empirically950

proven by several works [81, 27, 82], reliable fault probabilities are a crucial

ingredient to e�cient fault localization but are often di�cult to estimate.

8. Research Limitations

Our research does not come without limitations. First, the number of par-

ticipants in the di�erent studies, while being larger as in some previous studies955
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on the topic, could be higher and we plan to do additional experiments in the

future with a larger set of participants. The participants of our studies were

computer science students and all had a comparable background. We argue

that this participant group is representative for at least a part of the population

of real-world knowledge engineers, i.e., those that have a formal education in960

computer science.

The experiments conducted in Study 1 and Study 2 are based on two speci�c

knowledge bases (ontologies). While we thereby tried to make sure that the

insights are not limited to one single domain, our experiments were based on

ontologies with a comparable level of complexity. To what extent our insights965

generalize to much larger knowledge bases, therefore cannot be concluded from

the made experiments.

The prediction model presented in Section 7 is still preliminary and must be

seen more as a general indicator than a fully precise, optimized predictor. In

fact, the scores that describe the complexity of an axiom are, for now, estimates970

that base on one single study and on our own researcher expertise. However,

our model evaluation clearly indicates that the rules, i.e., the way of using the

structure of an axiom for the estimation (e.g., deeper nesting of sub-clauses is

harder), are plausible.

9. Summary975

Tool support for debugging is not only relevant for traditional software sy-

stems, but also for knowledge-based systems. In the �eld of general software

engineering, more and more research works are published which aim at better

understanding the true value of such debugging tools for developers. In the

�eld of knowledge-based systems, research on this topic is still limited. With980

this work, we aim to contribute new insights regarding the usefulness of query-

based knowledge base debugging in contrast to a more traditional test case based

approach.

We conducted di�erent user studies to address some of the open questions.
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The studies showed that users who were supported by any of the two forms of a985

model-based debugger were able to successfully locate a large fraction�in one

study almost all�of the faults in the given knowledge bases. This emphasizes

the usefulness of model-based knowledge debugging in general. The query-based

approach furthermore proved to be advantageous in terms of the e�ciency and,

thus, the required user e�ort of the debugging process. Users not only needed990

less time and fewer mouse clicks to locate the faults, the internal, optimizing

query selection strategy also reduces the number of test cases that are needed

to isolate the true cause of the observed problems.

Finally, the studies revealed certain other phenomena of knowledge base

debugging processes. One main insight is that measuring the capability of a995

debugging method to properly rank the fault candidates should not be the only

measure to compare di�erent strategies. Another important aspect is that users

sometimes provide wrong inputs to the debugging process. Future debuggers

should therefore be able to take this aspect into account. In this work, we

made a �rst step in this direction and proposed and evaluated a model that1000

predicts the reliability of the user input for a query of a given complexity. Such

predictions can, for example, be used in future systems to decide on which types

of queries should be asked to the user in query-based approaches.
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Appendix A. Formal Characterization of the Complexity Prediction

Model

The suggested prediction model for query complexity is a function M that1270

maps a query Q�consisting of a set of OWL25 axioms26 �to a real-valued score

in (0, 1] where 1 means maximally easy and 0 maximally hard, respectively.

Intuitively, M(Q) can be interpreted as an estimate of the query's probability

to be comprehended properly by a user.

The assumption behind the model is that di�erent expressions (logical ope-1275

rators, quanti�ers, etc.) appearing in axioms have di�erent complexities. To

describe these complexities, we use a set of weights that are chosen empirically

and based on our expertise. These weights are incorporated into a set of ma-

nually de�ned recursive rules. We use these rules to derive the complexity of a

given query by decomposing it stepwise to its smallest components.1280

Computationally, the underlying idea of the model is to �rst extract from

the query the axioms it consists of. Each of these axioms is then reduced to

the class expressions it comprises. The class expressions are then recursively

split into smaller sub-expressions until atomic classes are obtained. Based on

the structure of the axiom found by this recursive reduction, the model uses1285

the speci�ed weights to compute the complexity of the axiom. Finally, the

complexities of all query axioms are combined to compute the �nal query score.

In the following, we will describe in more detail (I) how axiom complexities

are used to determine the overall query complexity, (II) how axiom complexities

are derived based on the class expressions occurring in them and (III) how the1290

complexities of the class expressions are calculated.

The function M makes use of two additional functions. The function Max

computes for a given OWL axiom its estimated probability in (0, 1] of being

25Whenever we write OWL in this section, we mean the OWL 2 Web Ontology Language,

as speci�ed in [70].
26Currently, the model supports only class expression axioms. It can however be extended

to cover object property, data property and assertion axioms as well.

53



understood correctly; Mce computes for a given OWL class expression its com-

plexity in terms of a real number in [1,∞).1295

(I) Overall query complexity: Let Q = {ax 1, . . . , axk} be a query consisting

of the OWL axioms ax i, i ∈ {1, . . . , k}. Then, we de�ne

M(Q) :=

k∏
i=1

Max(ax i)

That is, the probability of Q being answered correctly is equal to the probability

of all axioms in Q being answered correctly (assuming independence between

the axioms).

(II) Axiom complexity: Let ax be an OWL (class expression) axiom. An

axiom ax has one of the following forms [70] for some integer s ≥ 2 and arbitrary1300

OWL class expressions X1, . . . , Xs:

• X1 SubClassOf X2

• EquivalentClasses X1 . . . Xs

• DisjointClasses X1 . . . Xs

• DisjointUnion X1 . . . Xs1305

We denote by CE (ax ) the set of all class expressions occurring in ax and specify

Max(ax ) =
∏

Xi∈CE(ax)

1

Mce(Xi)

That is, the probability of understanding the entire axiom is equal to the pro-

bability of properly comprehending all class expressions occurring in the axiom

(assuming independence between the user's understanding of the individual ex-

pressions). The estimated probability of comprehending a class expression is

inversely proportional to the complexity of the expression, as assessed by Mce.1310

(III) Class expression complexity:27 We de�ne Mce recursively as follows.

Let X1, X2, X3, X4, X5, X6 be (complex or atomic) OWL class expressions, A

27For brevity of notation we use Description Logic Syntax in the following description

wherever possible. E.g., �u�, �t�, �¬� stand for the OWL Manchester Syntax keywords and,

or and not, respectively. For details see [86, Fig. 3].
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an atomic OWL class, and C1, C2 complex OWL class expressions. With an

atomic OWL class we associate a named class, >, ⊥, or an enumeration of

individuals28. Further, let ro be an OWL object property, rd an OWL data1315

property, r an OWL (data or object) property, R a data range, Q ∈ {∀,∃},

N ∈ {=,≤,≥}, as well as m a non-negative integer, v an individual and l a

literal. Then:

Mce(A u C1) =Mce(C1 uA) =Mce(A) · (1 +Mce(C1))

if C1 = X3 tX4

Mce(C1 u C2) = (1 +Mce(C1)) · (1 +Mce(C2))

if C1 = X3 tX4, C2 = X5 tX6

Mce(X1 uX2) =Mce(X1) ·Mce(X2)

Mce(A t C1) =Mce(C1 tA) =Mce(A) · (1 +Mce(C1))

if C1 = X3 uX4

Mce(C1 t C2) = (1 +Mce(C1)) · (1 +Mce(C2))

if C1 = X3 uX4, C2 = X5 uX6

Mce(X1 tX2) =Mce(X1) ·Mce(X2)

Mce(Q roA) =Mce(NmroA) = 1 +Mce(A)

Mce(Q ro C1) =Mce(Nmro C1) = 2 +Mce(C1)

Mce(Q rdR) =Mce(NmrdR) =Mce(Nmr) = 2

Mce(ObjectHasValue r v) = 2

Mce(ObjectHasSelf r) = 2

Mce(DataHasValue r l) = 2

Mce(A) = 1

Mce(¬A) = 1.25

28OWL keyword ObjectOneOf [70].
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Mce(¬C1) = 2 ·Mce(C1)

Importantly, each class expression ce is evaluated from top to bottom, i.e., the

�rst of the above equations that is applicable is used to assess ce.1320
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